

Note

Synthesis and antibacterial activity of 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles

K Mogilaiah*, K Vidya, S Kavitha & K Shiva Kumar

Department of Chemistry, Kakatiya University,
Warangal 506 009, India
E-mail : mogilaiah_k@yahoo.co.in

Received 22 November 2007; accepted (revised) 3 October 2008

Condensation of 2-hydrazino-3-(3-chlorophenyl)-1,8-naphthyridine **2** with different acetophenones in methanol containing a catalytic amount of glacial acetic acid affords the corresponding acetophenone 3-(3-chlorophenyl)-1,8-naphthyridin-2-ylhydrazones **3** in excellent yields. The hydrazones **3** when subjected to the Vilsmeier-Haack reaction with POCl_3 -DMF gives 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles **4** in good yields. The structural assignments to compounds **3** and **4** are based on their elemental analyses and spectral data. Compounds **4** have been tested for their antibacterial activity.

Keywords: 2-Hydrazino-3-(3-chlorophenyl)-1,8-naphthyridine, acetophenones, 1,8-naphthyridin-2-ylhydrazones, Vilsmeier-Haack reagent, 1,8-naphthyridinyl-pyrazoles.

1,8-Naphthyridines are an important class of heterocyclic compounds, several derivatives of which have been found to possess diverse types of biological activities including antibacterial¹, antihypertensive², antitumor³ and anti-inflammatory⁴. Pyrazoles represent one of the most active classes of compounds possessing wide spectrum of biological activities⁵⁻⁸. In continuation of the earlier work⁹⁻¹² on synthesis of new 1,8-naphthyridine derivatives with potential biological activity, the present work involves the synthesis and antibacterial activity of 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles.

The starting compound, 2-hydrazino-3-(3-chlorophenyl)-1,8-naphthyridine **2** (ref. 13) required for the preparation of the target compounds, was obtained by the hydrazinolysis of 2-chloro-3-(3-chlorophenyl)-1,8-naphthyridine **1**. Compound **2** on condensation with different acetophenones in methanol in the presence of a catalytic amount of glacial acetic acid afforded the corresponding acetophenone 3-(3-chlorophenyl)-1,8-naphthyridin-2-ylhydrazones **3** in excellent yields. The hydrazones **3** on treatment with

Vilsmeier-Haack reagent (POCl_3 -DMF) furnished 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles **4** in good yields (Scheme I, Table I).

The structures of the compounds **3** and **4** have been confirmed on the basis of analytical and spectral (IR and ^1H NMR) data.

Antibacterial activity

All the title compounds **4** were screened *in vitro* for their antibacterial activity against the Gram-negative *Escherichia coli* and Gram-positive *Bacillus subtilis* using filter paper disc method of Vincent and Vincent¹⁴ at 250 and 500 $\mu\text{g}/\text{disc}$ concentrations. Gentamycin was used as standard for comparison. The results are given in Table II.

Experimental Section


Melting points were recorded using Cintex melting point apparatus and are uncorrected. Purity of the compounds was checked by TLC on silica gel G plates. IR spectra were recorded in KBr on a Perkin-Elmer spectrum BX series FT-IR spectrophotometer and ^1H NMR spectra on a Varian Gemini 200 MHz spectrometer using TMS as internal standard.

General procedure for the synthesis of acetophenone 3-(3-chlorophenyl)-1,8-naphthyridin-2-ylhydrazones 3. A mixture of **2** (0.01 mole) and appropriate acetophenone (0.01 mole) in methanol (30 mL) containing a drop of glacial acetic acid was refluxed for 0.5 hr. The solid that separated out on cooling was filtered and recrystallized from methanol to afford **3** (Table I).

3a: IR (KBr): 3362 (NH), 1624 cm^{-1} (C=N); ^1H NMR ($\text{CDCl}_3 + \text{DMSO}-d_6$): δ 2.35 (s, 3H, CH_3), 3.82 (s, 3H, OCH_3), 7.83 (m, 3H, $\text{C}_4\text{-H}$, $\text{C}_5\text{-H}$, $\text{C}_6\text{-H}$), 8.24 (m, 1H, $\text{C}_7\text{-H}$), 6.82 – 7.68 (m, 8H, Ar-H), 10.00 (s, 1H, NH).

3c: IR (KBr): 3355 (NH), 1623 cm^{-1} (C=N); ^1H NMR ($\text{CDCl}_3 + \text{DMSO}-d_6$): δ 2.40 (s, 3H, CH_3), 7.74 (m, 1H, $\text{C}_6\text{-H}$), 7.82 (m, 2H, $\text{C}_4\text{-H}$, $\text{C}_5\text{-H}$), 8.28 (m, 1H, $\text{C}_7\text{-H}$), 6.95 – 7.60 (m, 8H, Ar-H), 10.05 (s, 1H, NH).

3d: IR (KBr): 3357 (NH), 1622 cm^{-1} (C=N); ^1H NMR (CDCl_3): δ 2.42 (s, 3H, CH_3), 7.78 (m, 3H,

Scheme I

Table I — Characterization data of compounds 3 and 4

Compd	Ar	m.p. °C	Yield (%)	Mol. Formula	Found (%) (Calcd)		
					C	H	N
3a	<i>p</i> -CH ₃ OC ₆ H ₄	140	92	C ₂₃ H ₁₉ N ₄ OCl	68.76 (68.57)	4.77 4.72	13.99 13.91
3b	<i>p</i> -CH ₃ C ₆ H ₄	160	95	C ₂₃ H ₁₉ N ₄ Cl	71.59 (71.41)	4.96 4.92	14.56 14.49
3c	<i>p</i> -ClC ₆ H ₄	190	94	C ₂₂ H ₁₆ N ₄ Cl ₂	64.97 (64.86)	3.97 3.93	13.82 13.76
3d	<i>p</i> -BrC ₆ H ₄	212	92	C ₂₂ H ₁₆ N ₄ ClBr	58.79 (58.60)	3.60 3.55	12.50 12.43
3e	<i>o</i> -HOC ₆ H ₄	155	89	C ₂₂ H ₁₇ N ₄ OCl	67.78 (67.95)	4.43 4.38	14.47 14.41
3f	<i>p</i> -HOC ₆ H ₄	258	90	C ₂₂ H ₁₇ N ₄ OCl	67.77 (67.95)	4.44 4.38	14.49 14.41
3g	<i>m</i> -NO ₂ C ₆ H ₄	185	88	C ₂₂ H ₁₆ N ₅ O ₂ Cl	63.41 (63.23)	3.88 3.83	16.84 16.77
3h	<i>p</i> -NO ₂ C ₆ H ₄	255	92	C ₂₂ H ₁₆ N ₅ O ₂ Cl	63.40 (63.23)	3.89 3.83	16.83 16.77
3i	C ₆ H ₅	110	90	C ₂₂ H ₁₇ N ₄ Cl	71.04 (70.87)	4.59 4.56	15.10 15.03
3j	β-Naphthyl	88	90	C ₂₆ H ₁₉ N ₄ Cl	74.05 (73.85)	5.00 4.50	13.32 13.25
4a	<i>p</i> -CH ₃ OC ₆ H ₄	>300	72	C ₂₅ H ₁₇ N ₄ O ₂ Cl	68.24 (68.10)	3.90 3.86	12.78 12.71
4b	<i>p</i> -CH ₃ C ₆ H ₄	>300	80	C ₂₅ H ₁₇ N ₄ OCl	70.85 (70.67)	4.04 4.00	13.26 13.19
4c	<i>p</i> -ClC ₆ H ₄	>300	78	C ₂₄ H ₁₄ N ₄ OCl ₂	64.90 (64.72)	3.20 3.15	12.67 12.58

— Contd

Table I — Characterization data of compounds **3** and **4**— *Contd*

Compd	Ar	m.p. °C	Yield (%)	Mol. Formula	Found (%) (Calcd)		
					C	H	N
4d	<i>p</i> -BrC ₆ H ₄	>300	71	C ₂₄ H ₁₄ N ₄ OClBr	59.14 (58.96)	2.92 2.87	11.52 11.46)
4e	<i>o</i> -HOC ₆ H ₄	>300	67	C ₂₄ H ₁₅ N ₄ O ₂ Cl	67.73 (67.53)	3.56 3.51	13.19 13.13)
4f	<i>p</i> -HOC ₆ H ₄	>300	70	C ₂₄ H ₁₅ N ₄ O ₂ Cl	67.71 (67.53)	3.57 3.51	13.18 13.13)
4g	<i>m</i> -NO ₂ C ₆ H ₄	>300	65	C ₂₄ H ₁₄ N ₅ O ₃ Cl	63.41 (63.23)	3.12 3.07	15.42 15.37)
4h	<i>p</i> -NO ₂ C ₆ H ₄	>300	68	C ₂₄ H ₁₄ N ₅ O ₃ Cl	63.42 (63.23)	3.11 3.07	15.44 15.37)
4i	C ₆ H ₅	>300	70	C ₂₄ H ₁₅ N ₄ OCl	70.32 (70.16)	3.69 3.65	13.70 13.64)
4j	β-Naphthyl	>300	66	C ₂₈ H ₁₇ N ₄ Cl	75.77 (75.59)	3.87 3.82	12.68 12.60)

Table II — Antibacterial activity data of compounds **4**

Compd	Inhibition zone in mm			
	<i>E. coli</i> at		<i>B. subtilis</i> at	
	250 μg/disc	500 μg/disc	250 μg/disc	500 μg/disc
4a	5.5	8.0	4.0	8.5
4b	8.0	12.5	6.0	9.5
4c	9.5	15.0	7.5	10.0
4d	7.5	9.0	4.0	6.0
4e	5.0	7.0	3.5	5.5
4f	6.5	10.0	4.5	7.5
4g	4.5	7.5	3.5	5.0
4h	5.5	8.0	4.0	6.0
4i	6.0	9.5	4.5	6.5
4j	6.5	9.0	5.0	7.0
Gentamycin	12	22	8	15

C₄-H, C₅-H, C₆-H), 8.30 (m, 1H, C₇-H), 6.95 – 7.65 (m, 8H, Ar-H), 10.05 (s, 1H, NH).

3h: IR (KBr): 3360 (NH), 1620 cm⁻¹ (C=N); ¹H NMR (CDCl₃ + DMSO-*d*₆): δ 2.46 (s, 3H, CH₃), 8.20 (m, 3H, C₄-H, C₅-H, C₆-H), 8.40 (m, 1H, C₇-H), 7.08 – 7.90 (m, 8H, Ar-H), 10.30 (s, 1H, NH).

3i: IR (KBr): 3354 (NH), 1617 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 2.52 (s, 3H, CH₃), 8.20 (m, 3H, C₄-H, C₅-H, C₆-H), 8.32 (m, 1H, C₇-H), 6.92 – 7.83 (m, 11H, Ar-H), 10.15 (s, 1H, NH).

General procedure for the synthesis of 3-aryl-4-formyl-1-[3-(3-chlorophenyl)-1,8-naphthyridin-2-yl]pyrazoles 4. To the Vilsmeier-Haack reagent prepared from DMF (10 mL) and POCl₃ (1.1 mL,

0.012 mole), hydrazone **3** (0.01 mole) was added and the reaction mixture stirred at 60–65°C for 3 hr and then poured into ice-cold water. The solid that separated on neutralization with NaHCO₃ was filtered, washed with water and recrystallized from methanol to give **4** (**Table I**).

4a: IR (KBr): 1671 (C=O), 1620 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 3.84 (s, 3H, OCH₃), 8.10 (m, 1H, C₆-H), 8.22 (s, 1H, C₄-H), 8.40 (m, 1H, C₅-H), 8.75 (m, 1H, C₇-H), 6.80 – 7.95 (m, 9H, CH of pyrazole, 8Ar-H), 9.70 (s, 1H, CHO).

4c: IR (KBr): 1678 (C=O), 1612 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 8.02 (m, 1H, C₆-H), 8.15 (s, 1H, C₄-H), 8.30 (m, 1H, C₅-H), 8.72 (m, 1H, C₇-H), 7.15 – 7.80 (m, 9H, CH of pyrazole, 8Ar-H), 9.66 (s, 1H, CHO).

4d: IR (KBr): 1684 (C=O), 1612 cm⁻¹ (C=N); ¹H NMR (CDCl₃ + DMSO-*d*₆): δ 8.15 (m, 1H, C₆-H), 8.40 (m, 2H, C₄-H, C₅-H), 8.70 (m, 1H, C₇-H), 7.15 – 7.90 (m, 9H, CH of pyrazole, 8Ar-H), 9.62 (s, 1H, CHO).

4h: IR (KBr): 1674 (C=O), 1615 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 8.00 (m, 1H, C₆-H), 8.20 (m, 2H, C₄-H, C₅-H), 8.60 (m, 1H, C₇-H), 7.22 – 7.88 (m, 9H, CH of pyrazole, 8Ar-H), 9.70 (s, 1H, CHO).

4j: IR (KBr): 1678 (C=O), 1610 cm⁻¹ (C=N); ¹H NMR (CDCl₃ + DMSO-*d*₆): δ 8.15 (m, 1H, C₆-H), 8.40 (m, 2H, C₄-H, C₅-H), 8.70 (m, 1H, C₇-H), 7.20 – 7.98 (m, 12H, CH of pyrazole, 11Ar-H), 9.63 (s, 1H, CHO).

Acknowledgement

The authors are thankful to the Director, IICT, Hyderabad for providing ^1H NMR spectra.

References

- 1 Cooper C S, Klock P L, Chu D T W, Hardy D J, Swanson R N & Pattner J J, *J Med Chem*, **35**, **1992**, 1392.
- 2 Badawneh M, Ferrarini P L, Calderone U, Manera C, Martinotti E, Mori C, Saccomanni G & Testai L, *J Med Chem*, **36**, **2001**, 925.
- 3 Chen K, Kuo S, Hsiech M & Authoner K, *J Med Chem*, **90**, **1997**, 3049.
- 4 Roma G, Braccio M D, Grossi G, Mattioli F & Ghia M, *Eur J Med Chem*, **35**, **2000**, 1021.
- 5 Ahluwalia V K, Sharma H R & Tyagi R, *Indian J Chem*, **28B**, **1989**, 195.
- 6 Almansa C, Gomez L A, Cavaleanti F L, de Arriba A F, Garcia-Rafanell J & Form J, *J Med Chem*, **40**, **1997**, 547.
- 7 Daidone G, Maggio B, Plescia S, Raffa D, Musiu C, Milia C, Perre G & Marongiu M E, *Eur J Med Chem*, **33**, **1998**, 375.
- 8 Pinto J P D, *J Med Chem*, **44**, **2001**, 566.
- 9 Mogilaiah K, Chowdary D S & Rao R B, *Indian J Chem*, **40B**, **2001**, 43.
- 10 Mogilaiah K & Rama Sudhakar G, *Indian J Chem*, **42B**, **2003**, 636.
- 11 Mogilaiah K & Sakram B, *Indian J Chem*, **43B**, **2004**, 2724.
- 12 Mogilaiah K & Vidya K, *Indian J Chem*, **45B**, **2006**, 1905.
- 13 Mogilaiah K & Reddy G R, *J Chem Res*, **2004**, 145.
- 14 Vincent J C & Vincent H W, *Proc Soc Exptl Biol Med*, **55**, **1944**, 162.